Source code for technical_indicators.technical_indicators

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
This module provides some technical indicators for analysing stocks.

When I can I will add more.
If anyone wishes to contribute with new code or corrections/suggestions, feel
free.

Features:

    Relative Strength Index (RSI), ROC, MA envelopes
    Simple Moving Average (SMA), Weighted Moving Average (WMA), Exponential
    Moving Average (EMA)
    Bollinger Bands (BB), Bollinger Bandwidth, %B

Dependencies:

It requires numpy.
This module was tested under Windows with Python 2.7.3 and numpy 1.6.1.
"""

# Python 3 compatibility
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
import numpy as np


[docs]def roc(prices, period=21): """ The Rate-of-Change (ROC) indicator, a.k.a. Momentum, is a pure momentum oscillator that measures the percent change in price from one period to the next. The plot forms an oscillator that fluctuates above and below the zero line as the Rate-of-Change moves from positive to negative. ROC signals include centerline crossovers, divergences and overbought-oversold readings. Identifying overbought or oversold extremes comes natural to the Rate-of-Change oscillator. It can be used to measure the ROC of any data series, such as price or another indicator. Also known as PROC when used with price. ROC = [(Close - Close n periods ago) / (Close n periods ago)] * 100 http://www.csidata.com/?page_id=797 http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:rate_of_change_roc_a Input: prices ndarray period int > 1 and < len(prices) (optional and defaults to 21) Output: rocs ndarray Test: >>> import numpy as np >>> import technical_indicators as tai >>> prices = np.array([11045.27, 11167.32, 11008.61, 11151.83, 10926.77, ... 10868.12, 10520.32, 10380.43, 10785.14, 10748.26, 10896.91, 10782.95, ... 10620.16, 10625.83, 10510.95, 10444.37, 10068.01, 10193.39, 10066.57, ... 10043.75]) >>> print(tai.roc(prices, period=12)) [-3.84879682 -4.84888048 -4.52064339 -6.34389154 -7.85923013 -6.20834146 -4.31308173 -3.24341092] """ num_prices = len(prices) if num_prices < period: # show error message raise SystemExit('Error: num_prices < period') roc_range = num_prices - period rocs = np.zeros(roc_range) for idx in range(roc_range): rocs[idx] = ((prices[idx + period] - prices[idx]) / prices[idx]) * 100 return rocs
[docs]def rsi(prices, period=14): """ The Relative Strength Index (RSI) is a momentum oscillator. It oscillates between 0 and 100. It is considered overbought/oversold when it's over 70/below 30. Some traders use 80/20 to be on the safe side. RSI becomes more accurate as the calculation period (min_periods) increases. This can be lowered to increase sensitivity or raised to decrease sensitivity. 10-day RSI is more likely to reach overbought or oversold levels than 20-day RSI. The look-back parameters also depend on a security's volatility. Like many momentum oscillators, overbought and oversold readings for RSI work best when prices move sideways within a range. You can also look for divergence with price. If the price has new highs/lows, and the RSI hasn't, expect a reversal. Signals can also be generated by looking for failure swings and centerline crossovers. RSI can also be used to identify the general trend. The RSI was developed by J. Welles Wilder and was first introduced in his article in the June, 1978 issue of Commodities magazine, now known as Futures magazine. It is detailed in his book New Concepts In Technical Trading Systems. http://www.csidata.com/?page_id=797 http://stockcharts.com/help/doku.php?id=chart_school:technical_indicators:relative_strength_in Input: prices ndarray period int > 1 and < len(prices) (optional and defaults to 14) Output: rsis ndarray Test: >>> import numpy as np >>> import technical_indicators as tai >>> prices = np.array([44.55, 44.3, 44.36, 43.82, 44.46, 44.96, 45.23, ... 45.56, 45.98, 46.22, 46.03, 46.17, 45.75, 46.42, 46.42, 46.14, 46.17, ... 46.55, 46.36, 45.78, 46.35, 46.39, 45.85, 46.59, 45.92, 45.49, 44.16, ... 44.31, 44.35, 44.7, 43.55, 42.79, 43.26]) >>> print(tai.rsi(prices)) [ 70.02141328 65.77440817 66.01226849 68.95536568 65.88342192 57.46707948 62.532685 62.86690858 55.64975092 62.07502976 54.39159393 50.10513101 39.68712141 41.17273382 41.5859395 45.21224077 37.06939108 32.85768734 37.58081218] """ num_prices = len(prices) if num_prices < period: # show error message raise SystemExit('Error: num_prices < period') # this could be named gains/losses to save time/memory in the future changes = prices[1:] - prices[:-1] #num_changes = len(changes) rsi_range = num_prices - period rsis = np.zeros(rsi_range) gains = np.array(changes) # assign 0 to all negative values masked_gains = gains < 0 gains[masked_gains] = 0 losses = np.array(changes) # assign 0 to all positive values masked_losses = losses > 0 losses[masked_losses] = 0 # convert all negatives into positives losses *= -1 avg_gain = np.mean(gains[:period]) avg_loss = np.mean(losses[:period]) if avg_loss == 0: rsis[0] = 100 else: rs = avg_gain / avg_loss rsis[0] = 100 - (100 / (1 + rs)) for idx in range(1, rsi_range): avg_gain = ((avg_gain * (period - 1) + gains[idx + (period - 1)]) / period) avg_loss = ((avg_loss * (period - 1) + losses[idx + (period - 1)]) / period) if avg_loss == 0: rsis[idx] = 100 else: rs = avg_gain / avg_loss rsis[idx] = 100 - (100 / (1 + rs)) return rsis
[docs]def sma(prices, period): """ Simple Moving Average (SMA) are used to smooth the data in an array to help eliminate noise and identify trends. In SMA, each value in the time period carries equal weight. They do not predict price direction, but can be used to identify the direction of the trend or define potential support and resistance levels. SMA = (P1 + P2 + ... + Pn) / K where K = n and Pn is the most recent price http://www.financialwebring.org/gummy-stuff/MA-stuff.htm http://www.csidata.com/?page_id=797 http://stockcharts.com/school/doku.php?st=moving+average&id=chart_school:technical_indicators:moving_averages Input: prices ndarray period int > 1 and < len(prices) Output: smas ndarray Test: >>> import numpy as np >>> import technical_indicators as tai >>> prices = np.array([22.27, 22.19, 22.08, 22.17, 22.18, 22.13, 22.23, ... 22.43, 22.24, 22.29, 22.15, 22.39, 22.38, 22.61, 23.36, 24.05, 23.75, ... 23.83, 23.95, 23.63, 23.82, 23.87, 23.65, 23.19, 23.10, 23.33, 22.68, ... 23.10, 22.40, 22.17]) >>> period = 10 >>> print(tai.sma(prices, period)) [ 22.221 22.209 22.229 22.259 22.303 22.421 22.613 22.765 22.905 23.076 23.21 23.377 23.525 23.652 23.71 23.684 23.612 23.505 23.432 23.277 23.131] """ num_prices = len(prices) if num_prices < period: # show error message raise SystemExit('Error: num_prices < period') sma_range = num_prices - period + 1 smas = np.zeros(sma_range) # only required for the commented code below #k = period for idx in range(sma_range): # this is the code, but using np.mean below is faster and simpler #for period_num in range(period): # smas[idx] += prices[idx + period_num] #smas[idx] /= k smas[idx] = np.mean(prices[idx:idx + period]) return smas
[docs]def wma(prices, period): """ Weighted Moving Average (WMA) is a type of moving average that assigns a higher weighting to recent price data. WMA = (P1 + 2 P2 + 3 P3 + ... + n Pn) / K where K = (1+2+...+n) = n(n+1)/2 and Pn is the most recent price after the 1st WMA we can use another formula WMAn = WMAn-1 + w.(Pn - SMA(prices, n-1)) where w = 2 / (n + 1) http://www.csidata.com/?page_id=797 http://www.financialwebring.org/gummy-stuff/MA-stuff.htm http://www.investopedia.com/terms/l/linearlyweightedmovingaverage.asp http://fxtrade.oanda.com/learn/forex-indicators/weighted-moving-average Input: prices ndarray period int > 1 and < len(prices) Output: wmas ndarray Test: >>> import numpy as np >>> import technical_indicators as tai >>> prices = np.array([77, 79, 79, 81, 83, 49, 55]) >>> period = 5 >>> print(tai.wma(prices, period)) [ 80.73333333 70.46666667 64.06666667] """ num_prices = len(prices) if num_prices < period: # show error message raise SystemExit('Error: num_prices < period') wma_range = num_prices - period + 1 wmas = np.zeros(wma_range) k = (period * (period + 1)) / 2.0 # only required for the commented code below #w = 2 / float(period + 1) for idx in range(wma_range): for period_num in range(period): weight = period_num + 1 wmas[idx] += prices[idx + period_num] * weight wmas[idx] /= k # this is the code for the second formula, but I think the first is simpler # to understand #for idx in range(wma_range): #if idx == 0: #for period_num in range(period): #weight = period_num + 1 #wmas[idx] += prices[idx + period_num] * weight #wmas[idx] /= k #else: #wmas[idx] = wmas[idx - 1] + w * \ #(prices[idx + period - 1] - \ #sma(prices[idx - 1:idx + period - 1], period)) return wmas
[docs]def ema(prices, period, ema_type=0): """ Exponencial Moving Average (EMA) are used to smooth the data in an array to help eliminate noise and identify trends. Exponential moving averages reduce the lag by applying more weight to recent prices. The weighting applied to the most recent price depends on the number of periods in the moving average. They do not predict price direction, but can be used to identify the direction of the trend or define potential support and resistance levels. EMA type 0 EMAn = w.Pn + (1 - w).EMAn-1 EMAn = EMAn-1 + w.(Pn - EMAn-1) EMAn = w.Pn + w.(1 - w).Pn-1 + w.(1 - w)^2.Pn-2 + ... + w.(1 - w)^(n-1).P1 + w.(1 - w)^n.EMA0 where w = 2 / (n + 1) and EMA0 = mean(oldest period) or EMAn = w.EMAn-1 + (1 - w).Pn where w = 1 - 2 / (n + 1) and Pn is the most recent price and EMA0 = mean(oldest period) EMA type 1 The above formulas with EMA0 = P1 (oldest price) EMA type 2 EMA = (Pn + w.Pn-1 + w^2.Pn-2 + w^3.Pn-3 + ... ) / K where K = 1 + w + w^2 + ... = 1 / (1 - w) and Pn is the most recent price and w = 2 / (N + 1) http://www.financialwebring.org/gummy-stuff/MA-stuff.htm http://www.csidata.com/?page_id=797 http://stockcharts.com/school/doku.php?st=moving+average&id=chart_school:technical_indicators:moving_averages Input: prices ndarray period int > 1 and < len(prices) ema_type can be 0, 1 or 2 Output: emas ndarray Tests: >>> import numpy as np >>> import technical_indicators as tai >>> prices = np.array([22.27, 22.19, 22.08, 22.17, 22.18, 22.13, 22.23, ... 22.43, 22.24, 22.29, 22.15, 22.39, 22.38, 22.61, 23.36, 24.05, 23.75, ... 23.83, 23.95, 23.63, 23.82, 23.87, 23.65, 23.19, 23.10, 23.33, 22.68, ... 23.10, 22.40, 22.17]) >>> period = 10 >>> print(tai.ema(prices, period)) [ 22.221 22.20809091 22.24116529 22.26640796 22.32887924 22.51635574 22.79520015 22.96880013 23.12538192 23.27531248 23.33980112 23.42711001 23.50763546 23.53351992 23.47106176 23.40359598 23.39021489 23.26108491 23.23179675 23.08056097 22.91500443] >>> print(tai.ema(prices, period, 1)) [ 22.27 22.25545455 22.22355372 22.21381668 22.20766819 22.1935467 22.20017457 22.24196102 22.24160447 22.25040366 22.23214845 22.26084873 22.2825126 22.34205576 22.52713653 22.8040208 22.97601702 23.13128665 23.28014362 23.34375387 23.43034408 23.51028152 23.53568488 23.47283308 23.40504525 23.39140066 23.26205508 23.23259052 23.08121043 22.9155358 ] >>> print(tai.ema(prices, period, 2)) [ 22.28588695 22.174706 22.35085492 22.37470018 22.5672175 23.21585701 23.89833692 23.77696963 23.82035739 23.9264279 23.68389526 23.79525297 23.85640891 23.68752817 23.28045894 23.13280996 23.29414649 22.79166223 23.04393782 22.51707883 22.23310448] """ num_prices = len(prices) if num_prices < period: # show error message raise SystemExit('Error: num_prices < period') if ema_type == 0: # 1st value is the average of the period ema_range = num_prices - period + 1 emas = np.zeros(ema_range) emas[0] = np.mean(prices[:period]) w = 2 / float(period + 1) # only required for the 4th formula #w = 1 - 2 / float(period + 1) for idx in range(1, ema_range): emas[idx] = w * prices[idx + period - 1] + (1 - w) * emas[idx - 1] # or with the 2nd formula #emas[idx] = emas[idx - 1] + w * ((prices[idx + period - 1] - # emas[idx - 1])) # or with the 4th formula #emas[idx] = w * emas[idx - 1] + (1 - w) * prices[idx + period - 1] elif ema_type == 1: # 1st value is the 1st price ema_range = num_prices emas = np.zeros(ema_range) emas[0] = prices[0] w = 2 / float(period + 1) # only required for the 4th formula #w = 1 - 2 / float(period + 1) for idx in range(1, ema_range): emas[idx] = w * prices[idx] + (1 - w) * emas[idx - 1] # or with the 2nd formula #emas[idx] = emas[idx - 1] + w * (prices[idx] - emas[idx - 1]) # or with the 4th formula #emas[idx] = w * emas[idx - 1] + (1 - w) * prices[idx] else: ema_range = num_prices - period + 1 emas = np.zeros(ema_range) w = 2 / float(period + 1) k = 1 / float(1 - w) for idx in range(ema_range): for period_num in range(period): # this runs the prices backwards to comply with the formula emas[idx] += w**period_num * \ prices[idx + period - period_num - 1] emas[idx] /= k return emas
[docs]def ma_env(prices, period, percent, ma_type=0): """ Moving Average Envelopes are percentage-based envelopes set above and below a moving average. They can be used as a trend following indicator. The envelopes can also be used to identify overbought and oversold levels when the trend is relatively flat. Upper Envelope: MA + (MA x percent) Lower Envelope: MA - (MA x percent) http://www.csidata.com/?page_id=797 http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:moving_average_envel http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:bollinger_band_perce Input: prices ndarray period int > 1 and < len(prices) percent float > 0.00 and < 1.00 ma_type 0=EMA type 0, 1=EMA type 1, 2=EMA type 2, 3=WMA, 4=SMA Output: ma_envs ndarray with upper, middle, lower bands, range and %B Test: >>> import numpy as np >>> import technical_indicators as tai >>> prices = np.array([86.16, 89.09, 88.78, 90.32, 89.07, 91.15, 89.44, ... 89.18, 86.93, 87.68, 86.96, 89.43, 89.32, 88.72, 87.45, 87.26, 89.50, ... 87.90, 89.13, 90.70, 92.90, 92.98, 91.80, 92.66, 92.68, 92.30, 92.77, ... 92.54, 92.95, 93.20, 91.07, 89.83, 89.74, 90.40, 90.74, 88.02, 88.09, ... 88.84, 90.78, 90.54, 91.39, 90.65]) >>> period = 20 >>> print(tai.ma_env(prices, period, 0.1, 4)) [[ 97.57935 88.7085 79.83765 17.7417 0.35635537] [ 97.95005 89.0455 80.14095 17.8091 0.50249872] [ 98.164 89.24 80.316 17.848 0.4742268 ] [ 98.3301 89.391 80.4519 17.8782 0.55196273] [ 98.4588 89.508 80.5572 17.9016 0.47553291] [ 98.65735 89.6885 80.71965 17.9377 0.58147644] [ 98.7206 89.746 80.7714 17.9492 0.48295189] [ 98.90375 89.9125 80.92125 17.9825 0.45926595] [ 99.08855 90.0805 81.07245 18.0161 0.32512863] [ 99.41965 90.3815 81.34335 18.0763 0.35055017] [ 99.72325 90.6575 81.59175 18.1315 0.29607313] [ 99.9493 90.863 81.7767 18.1726 0.42114502] [ 99.9713 90.883 81.7947 18.1766 0.41401032] [ 99.9944 90.904 81.8136 18.1808 0.37987327] [ 100.0868 90.988 81.8892 18.1976 0.30557876] [ 100.26775 91.1525 82.03725 18.2305 0.28648419] [ 100.30955 91.1905 82.07145 18.2381 0.40730942] [ 100.232 91.12 82.008 18.224 0.32330992] [ 100.2837 91.167 82.0503 18.2334 0.38828194] [ 100.37445 91.2495 82.12455 18.2499 0.46989025] [ 100.36565 91.2415 82.11735 18.2483 0.59088518] [ 100.2826 91.166 82.0494 18.2332 0.59948884] [ 100.15445 91.0495 81.94455 18.2099 0.54121385]] """ num_prices = len(prices) if num_prices < period: # show error message raise SystemExit('Error: num_prices < period') ma_env_range = num_prices - period + 1 # 3 bands, range and %B ma_envs = np.zeros((ma_env_range, 5)) if 0 <= ma_type <= 2: # EMAs ma = ema(prices, period, ema_type=ma_type) elif ma_type == 3: # WMA ma = wma(prices, period) else: # SMA ma = sma(prices, period) for idx in range(ma_env_range): # upper, middle, lower bands, range and %B ma_envs[idx, 0] = ma[idx] + (ma[idx] * percent) ma_envs[idx, 1] = ma[idx] ma_envs[idx, 2] = ma[idx] - (ma[idx] * percent) ma_envs[idx, 3] = ma_envs[idx, 0] - ma_envs[idx, 2] ma_envs[idx, 4] = (prices[idx] - ma_envs[idx, 2]) / ma_envs[idx, 3] return ma_envs
[docs]def bb(prices, period, num_std_dev=2.0): """ Bollinger bands (BB) are volatility bands placed above and below a moving average. Volatility is based on the standard deviation, which changes as volatility increases and decreases. The bands automatically widen when volatility increases and narrow when volatility decreases. This dynamic nature of Bollinger Bands also means they can be used on different securities with the standard settings. For signals, Bollinger Bands can be used to identify M-Tops and W-Bottoms or to determine the strength of the trend. Signals derived from narrowing BandWidth are also important. Bollinger BandWidth is an indicator that derives from Bollinger Bands, and measures the percentage difference between the upper band and the lower band. BandWidth decreases as Bollinger Bands narrow and increases as Bollinger Bands widen. Because Bollinger Bands are based on the standard deviation, falling BandWidth reflects decreasing volatility and rising BandWidth reflects increasing volatility. %B quantifies a security's price relative to the upper and lower Bollinger Band. There are six basic relationship levels: %B equals 1 when price is at the upper band %B equals 0 when price is at the lower band %B is above 1 when price is above the upper band %B is below 0 when price is below the lower band %B is above .50 when price is above the middle band (20-day SMA) %B is below .50 when price is below the middle band (20-day SMA) They were developed by John Bollinger. Bollinger suggests increasing the standard deviation multiplier to 2.1 for a 50-period SMA and decreasing the standard deviation multiplier to 1.9 for a 10-period SMA. http://www.csidata.com/?page_id=797 http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:bollinger_bands http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:bollinger_band_width http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:bollinger_band_perce Input: prices ndarray period int > 1 and < len(prices) num_std_dev float > 0.0 (optional and defaults to 2.0) Output: bbs ndarray with upper, middle, lower bands, bandwidth, range and %B Test: >>> import numpy as np >>> import technical_indicators as tai >>> prices = np.array([86.16, 89.09, 88.78, 90.32, 89.07, 91.15, 89.44, ... 89.18, 86.93, 87.68, 86.96, 89.43, 89.32, 88.72, 87.45, 87.26, 89.50, ... 87.90, 89.13, 90.70, 92.90, 92.98, 91.80, 92.66, 92.68, 92.30, 92.77, ... 92.54, 92.95, 93.20, 91.07, 89.83, 89.74, 90.40, 90.74, 88.02, 88.09, ... 88.84, 90.78, 90.54, 91.39, 90.65]) >>> period = 20 >>> print(tai.bb(prices, period)) [[ 9.12919107e+01 8.87085000e+01 8.61250893e+01 5.82449423e-02 5.16682146e+00 6.75671306e-03] [ 9.19497209e+01 8.90455000e+01 8.61412791e+01 6.52300429e-02 5.80844179e+00 5.07661263e-01] [ 9.26132536e+01 8.92400000e+01 8.58667464e+01 7.55995881e-02 6.74650724e+00 4.31816571e-01] [ 9.29344497e+01 8.93910000e+01 8.58475503e+01 7.92797873e-02 7.08689946e+00 6.31086945e-01] [ 9.33114122e+01 8.95080000e+01 8.57045878e+01 8.49848539e-02 7.60682430e+00 4.42420124e-01] [ 9.37270110e+01 8.96885000e+01 8.56499890e+01 9.00563838e-02 8.07702198e+00 6.80945403e-01] [ 9.38972812e+01 8.97460000e+01 8.55947188e+01 9.25117832e-02 8.30256250e+00 4.63143909e-01] [ 9.42636418e+01 8.99125000e+01 8.55613582e+01 9.67861377e-02 8.70228361e+00 4.15826692e-01] [ 9.45630193e+01 9.00805000e+01 8.55979807e+01 9.95225220e-02 8.96503854e+00 1.48579313e-01] [ 9.47851634e+01 9.03815000e+01 8.59778366e+01 9.74461225e-02 8.80732672e+00 1.93266744e-01] [ 9.50411874e+01 9.06575000e+01 8.62738126e+01 9.67087637e-02 8.76737475e+00 7.82660026e-02] [ 9.49062071e+01 9.08630000e+01 8.68197929e+01 8.89956780e-02 8.08641429e+00 3.22789193e-01] [ 9.49015375e+01 9.08830000e+01 8.68644625e+01 8.84332063e-02 8.03707509e+00 3.05526266e-01] [ 9.48939343e+01 9.09040000e+01 8.69140657e+01 8.77834713e-02 7.97986867e+00 2.26311285e-01] [ 9.48594576e+01 9.09880000e+01 8.71165424e+01 8.50982021e-02 7.74291521e+00 4.30661576e-02] [ 9.46722663e+01 9.11525000e+01 8.76327337e+01 7.72280810e-02 7.03953265e+00 -5.29486389e-02] [ 9.45543042e+01 9.11905000e+01 8.78266958e+01 7.37753219e-02 6.72760849e+00 2.48722001e-01] [ 9.46761721e+01 9.11200000e+01 8.75638279e+01 7.80546993e-02 7.11234420e+00 4.72660054e-02] [ 9.45733946e+01 9.11670000e+01 8.77606054e+01 7.47286754e-02 6.81278915e+00 2.01003516e-01] [ 9.45322396e+01 9.12495000e+01 8.79667604e+01 7.19508503e-02 6.56547911e+00 4.16304661e-01] [ 9.45303313e+01 9.12415000e+01 8.79526687e+01 7.20906879e-02 6.57766250e+00 7.52141243e-01] [ 9.43672335e+01 9.11660000e+01 8.79647665e+01 7.02286710e-02 6.40246702e+00 7.83328285e-01] [ 9.41460689e+01 9.10495000e+01 8.79529311e+01 6.80194599e-02 6.19313782e+00 6.21182512e-01]] """ num_prices = len(prices) if num_prices < period: # show error message raise SystemExit('Error: num_prices < period') bb_range = num_prices - period + 1 # 3 bands, bandwidth, range and %B bbs = np.zeros((bb_range, 6)) simple_ma = sma(prices, period) for idx in range(bb_range): std_dev = np.std(prices[idx:idx + period]) # upper, middle, lower bands, bandwidth, range and %B bbs[idx, 0] = simple_ma[idx] + std_dev * num_std_dev bbs[idx, 1] = simple_ma[idx] bbs[idx, 2] = simple_ma[idx] - std_dev * num_std_dev bbs[idx, 3] = (bbs[idx, 0] - bbs[idx, 2]) / bbs[idx, 1] bbs[idx, 4] = bbs[idx, 0] - bbs[idx, 2] bbs[idx, 5] = (prices[idx] - bbs[idx, 2]) / bbs[idx, 4] return bbs
if __name__ == "__main__": #import doctest #doctest.testmod(verbose=True) pass